
U.S. Department of Energy

UCRL-CR-136348
B324163

Scaling and Performance
of a 3-D Radiation
Hydrodynamics Code on
Message-Passing Parallel
Computers: Final Report

J. C. Hayes and M. L. Norman

October 28,1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Scaling and Performance of a 3-D Radiation Hydrodynamics
Code on Message-Passing Parallel Computers: Final Report

John C. Hayes
Laboratory for Computational Astrophysics &

National Center for Supercomputing Applications
University of Illinois, Urbana-Champaign

Michael L. Norman
Laboratory for Computational Astrophysics, Department of Astronomy &

National Center for Supercomputing Applications
University of Illinois, Urbana-Champaign

2

1. Introduction

This report details an investigation into the efficacy of two approaches to solving the
radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-
edge scientific computing platforms have evolved from large single-node vector processors
to parallel aggregates containing tens to thousands of individual CPU’s, the ability of an
algorithm to maintain high compute efficiency when distributed over a large array of nodes
is critically important. The viability of an algorithm thus hinges upon the tripartite question
of numerical accuracy, total time to solution, and parallel efficiency.

In this study we evaluate and compare the performance of implicit and explicit solu-
tions to radiation diffusion within three-dimensional simulations of diffusion through static
media, and of diffusion coupled to hydrodynamic motions. The implicit method may employ
a diagonally-preconditioned Conjugate Gradient (CG) or a multigrid (MG) linear system
solver. As of this writing, the MG package is not yet robust enough to handle the special
challenges resulting from the strongly discontinuous diffusion coefficients in our test problem,
but it has been used on a variety of other problems and continues to be improved, with the
aim of eventually applying it to the ICF test described in this report. The explicit method
uses the unconditionally stable Product Formula (PF) f ormalism to evaluate the diffusion
term in the radiation energy equation. Unlike traditional explicit methods, the PF method
does not place stability restrictions upon timestep growth, although we shall see that re-
strictions motivated by accuracy constraints do exist. Additionally, the explicit nature of
the calculation obviates the need for inverting a matrix (or performing the equivalent), as
required by implicit methods. Finally, the locality of the explicit solution sharply reduces
the required inter-node communication during a solution step.

In contrast, the implicit solution demands both a matrix solution and intensive inter-
node communication owing both to the need for ghost-zone data and for global reduction
operations used in convergence checks. Opposite these concerns is the fact that the implicit
method allows for timestep growth which is not Courant limited, and indeed far more robust
than that allowed by the PF in the applications detailed here.

The ultimate objective of this report is to ascertain the relative merits of the implicit
and unconditionally stable explicit approaches to radiation diffusion. We shall see that the
PF algorithm possesses outstanding scalability over numbers of nodes of up to at least order
103, but that the current operator splitting scheme used to implement the PF introduces
an accuracy constraint which is far too severe for the challenging test problem posed in this
study. The prospects for alleviating this constraint with an alternate scheme and the benefits
(if any) of doing so are discussed in the summary section of this report.

3-

This report is organized in the following manner: 52 describes the physical problem used
to benchmark the code and lists the various numerical tests derived from the basic problem.
53 provides an overview of ZEUS-MP and lists the equations used to model radiating flows.
$4 describes the mathematical solution techniques employed in the implicit and explicit radi-
ation solvers, with full details of the PF deferred to Appendix B. $5 explores the dependence
of the accuracy of each algorithm upon timestep control and operator splitting. 56 presents
the suite of scaling results, which come in the form of “scaled work” tests, where the number
of grid points scales (linearly) with the number of nodes, and “fixed work” tests, where a
problem of fixed total size is distributed across a varying number of nodes. $7 presents a
grand summary and discussion of all results presented herein.

2. Test Problems

2.1. The Physical Model

To provide meaningful answers to the questions posed above, we challenge the various
algorithms in ZEUS-MP through the construction of a three-dimensional, ablation-driven
implosion. The physical characteristics of the problem are inspired by Inertial Confinement
Fusion (ICF) tests, though we must note at the outset that some elements of physics central
to real ICF simulations are excluded here (e.g., nuclear burning, non-ideal and/or multi-
species fluids, multi-frequency radiation transport). We consider a spherical “capsule” with
the following characteristics:

l DT gas within 0 5 R < 0.087 cm, p = 0.025 g/cc;

l DT ice from 0.087 < R 5 0.095 cm, p = 0.25 g/cc;

l CH foam from 0.095 < R 5 0.111 cm, p = 1.2 g/cc;

l He gas from 0.111 < R < 0.497 cm, p = 0.01 g/cc; and

l Au for R > 0.497 cm, p = 19.3 g/cc.

We model this capsule on a grid constructed as follows:

l 0.01 < R < 0.490 cm; reflecting inner and outer boundary conditions.

l 7r/4< 8 < 3n/4; periodic boundary conditions.

-4

l 7r/4< 4 5 3n/4; periodic boundary conditions.

l Grid resolutions ranging from 256x16~16 to 512x256~256

The following physical inputs are imposed:

l Single-fluid ideal gas EOS with I’ = 5/3.

l Opacities derived from an analytic power-law formula for the mean-free-path:
X = A, x (p/pa)-" x (T/To)n; (v,n > 0).

Additionally, we assume grey radiation transport. The assumption of a single-component
fluid deserves special attention, as it has mandated several compromises in the construction
of the test problem. From a hydrodynamic perspective, the real materials used in an ICF
capsule obey different equations of state with different effective “I”s.” While the gaseous
components of the capsule might reasonably be approximated as ideal gases, other compo-
nents (most notably the DT ice and the gold) possess material strength which can not be
modeled in our prescription. For this reason, the outer radial boundary of our grid is a
reflecting one that lies just inside the inner radius of the gold layer. This eliminates the
spurious effect of ablation at a helium-gold interface, a difficulty encountered during early
trials of the test problem.

The consequences of the single-fluid approximation for the construction of opacities
(both Rosseland and Planck means) are dramatic and far-reaching. The opacities used in
ICF simulations can be approximated by power-law expressions of a Kramer’s Law type,
where

2 T -3.5
Li=Lco~ - .

00 po To
(1)

The crucial distinction between materials lies in the values of the normalization constants
chosen, which vary drastically from one material to the next. In the initial model for our
simulations, the source (He) temperature is 12,000 times larger than that of the target region
(300 vs 0.025 eV). Furthermore, early versions of the problem possessed densities at the He-
CH interface which changed by a factor of 2200 (0.0005 g/cc for the He, vs. 1.1 g/cc for
the CH foam). Naive use of equation (1) with such large factors leads to contrasts (21
orders of magnitude!) in the material opacity which are far higher than those encountered
(roughly 5 orders of magnitude) in real ICF materials. Modeling such (p,T) conditions with
a single-fluid opacity law of the Kramer’s form has two profound consequences: (1) For
any remotely physical choice of opacity in the source region, the CH foam layer becomes
so optically thick that ablation on physically relevant timescales is completely suppressed,

5-

thus destroying the desired physical character of the problem. (2) The extreme variation
in opacity leads to an extreme variation in the value of diffusion coefficients. This leads to
matrices - for an implicit solution - that become profoundly ill-conditioned once timesteps
become dynamically meaningful. Such occurences repeatedly doomed the implicit linear
system solver.

To successfully implement the test problem, we derived opacities from the following
expression for the mean-free path:

X(cm) = 1O-6
(1.2gL;)’ (O.OZeV)i” ’ (4

with the restriction that 10d6 5 X(cm) 5 0.1. With this relation for the mean-free path, we
then define analytic Rosseland and Planck mean opacities (in units of cm-‘) as follows:

1.0
KR = -;

x

KP = lo.&.

These choices allowed us to simultaneously meet the following goals: (1) retaining the abla-
tion effect, (2) avoiding the creation of pathologically ill-conditioned matrices, (3) allowing
radiation diffusion to proceed on dynamically relevant timescales, while at the same time (4)
reducing the amount of radiative “preheating” of the DT core as much as possible.

2.2. The Test Suite

With a physical problem constructed as outlined above, we may impose a battery of tests
that gauge the performance and accuracy both of the integrated code and of selected modules.
To begin, we examine tests involving nothing more than pure diffusion of a radiation front
through a medium that is both static and thermally frozen; i.e. both hydrodynamic and
matter-radiation coupling terms are zeroed. This allows a pure head-to-head comparison of
the implicit and explicit diffusion solvers with regard to all aspects of performance. Next,
we retain the assumption of a static medium, but we allow thermal communication between
the radiation and material. In this set of tests the limitations of the operator-splitting
scheme used to implement the PF will become clearly visible. Indeed we will see that
accurate solutions involving matter-radiation coupling are unattainable with the PF for
any reasonable choice of timestep restriction parameters, and we will show that this is a
consequence of the operator splitting scheme itself rather than an inherent flaw with the PF
solution. Nonetheless, we will proceed to full radiation hydrodynamic solutions where the

-6

explicit and implicit algorithms are compared with regard to approximate time for solution,
with an aim toward ascertaining whether an accurate implementation of the PF algorithm
could, even in principle, be superior to an implicit scheme using an efficient solver. Results of
these comparisons will strongly suggest that continued research effort may be more profitably
directed toward performance-enhanced implicit schemes than explicit methods.

3. ZEUS-MP and the Equations of Radiation Hydrodynamics

Both radiation solvers are deployed within ZEUS-MP, the message-passing version of
the ZEUS algorithm (Stone & Norman, 1992a,b; Stone, Mihalas, & Norman, 1992). The
equations solved in ZEUS-MP may be written as follows:

DP E + pv-v = 0

pg = -Vp-V.Qd~F
c

De --
Dt

- -~V~V-~~~B+CK~E-QQVV

(5)

(6)

(7)

DE
- = -V.F-VV:P+-~T~I+B-CK~E
Dt

In the above, x is the sum of the Rosseland mean opacity and the scattering opacity,
which is taken to be zero in all tests discussed here. In the flux equation, A(E) is the
flux-limiter. We have chosen a Levermore-Pomraning flux-limiter for all tests.

The ZEUS codes employ a Wilson-LeBlanc scheme for solving the hydrodynamic equa-
tions on an Eulerian grid; ZEUS-MP uses the Message Passing Interface (MPI) standard for
distributing the calculation across multiple processors. The original version of ZEUS-MP,
developed by Robert Fiedler, contained modules for gas hydrodynamics on arbitrary orthog-
onal grids and explicit radiation diffusion on Cartesian grids only. A detailed report on the
performance of this code on a wide variety of platforms is available (Fiedler 1997).

The current version of ZEUS-MP adds a generalized version of the PF algorithm for
arbitrary orthogonal grids, and an implicit radiation diffusion solver which can use either a
preconditioned CG or an MG linear system package. The entire code has been designed in a
highly modular way which allows for alternate routines (or even operator splitting schemes)
to be swapped with relative ease.

7-

In the operator-splitting schemes currently employed, the PF is used to evaluate the
flux divergence term alone. The remaining terms in the coupled gas and radiation energy
equations (eqs. 7 and 8) are solved in the remaining two stages of a 3-stage splitting scheme.
In the implicit method, all terms in the radiation energy equation are solved with the iterative
linear system solver, and the material temperature is then updated in the second stage of
a two-stage splitting scheme. A cursory description of the PF formalism and details of
the operator splitting schemes used in the explicit and implicit algorithms are presented
in the following section. A full mathematical treatment of the PF approach is detailed in
Appendix B, and the precise functional values of the matrix elements in the implicit solution
are documented in Appendix C.

4. The Diffusion Solvers

4.1. Implicit Diffusion

4.1.1. Mathematical Formalism

We begin the discussion of the implicit solution by considering the operator splitting
scheme used to update the radiation and gas energy densities. In ZEUS-MP, artificial viscos-
ity and PdV terms are handled in separate sections of the code. Thus we consider reduced
forms of equations (7) and (8) written in time-centered form as follows:

E n+l - E” = At [/Q (47rB - cEn+‘) - V . F - Vu : P]

e n+l - en = At [-Q (47rB - cEn+l)]

In what follows, we will make use of the following relations and definitions:

(10)

(11)

l B = caT4/7r.

l e = pc,T.

0 tk, z CK&.

0 .F E atv . v : f, where f is the Eddington tensor. (P = fE.)

l [EID s AtV . (DVE), w h ere D is the flux-limited diffusion coefficient.

We will also simplify the time-centering notation by replacing “n + 1” with a “prime” symbol
and by dropping the “n” superscript altogether.

-8-

The splitting scheme employed parallels that used in the 3-T ARES code at LLNL
(Baldwin et. al 1998). To proceed, we will make use of the temperature dependence of the
Planck function and gas energy to write an equation for the gas temperature. The essential
feature of this approach is that we linearize the source function with the following relation:

T’4 N T3 (4T’ - 3T) . (12)

We may therefore use (12) to transform (11) as

T’ = (;) [i., (2) (3nT4 + El)] , (13)

where we have defined n as

Use of (13) for T’, along with the T-dependent expressions for e and B, allows us to
write (10) as

\ I

[~+k;+.+-p~~~ = E+%. (15)

(15) has the form of a matrix equation, AZ = G, if we identify I? as the RHS of (15), Z as
the solution vector, E’, and A as

A E l+;+F-[E]D, (16)

where in (16) it is understood that [E] D represents the diffusion operator that operates on
E’. All off-diagonal elements of A are contributed by the diffusion operator; the other terms
contribute strictly to the diagonal.

Armed with the above, an implicit update to the gas and radiation energy densities
proceeds as follows: (1) using opacities and diffusion coefficients calculated with the old
matter temperature, update E with a matrix solution to (15). (2) With the updated E, use
the analytic expression (13) to update T, and the constitutive relation for e(p, T) to update
e.

4.1.2. The Implicit Linear System Solvers

The bulk of the implicit tests in this report are performed with the CG linear system
solver. The theory of the Conjugate Gradient method will not be reproduced here, as there
are many sources available on the subject (e.g. Barrett et. al, 1994). However, a few

-9-

features specific to this algorithm are worth mentioning. Currently, the only preconditioner
available in our algorithm is diagonal preconditiong, but the package has been written, as
has the parent code, in a highly modular way which allows other preconditioning options to
be implemented with little or no disturbance to the driver routine. The CG solver has also
been designed from the outset to exploit machine architectures which support simultaneous
communication and computation. To this end, all MPI communication requests are non-
blocking, and the Fortran DO loops have been structured so that work on data points
away from local grid boundaries may proceed while ghost zone data is being exchanged.
The scaling tests presented in 56 will quantify the degree to which we have succeeded. A
third feature deserving special notice is the fact that the CG package has been designed to
accommodate matrices generated by ‘multigroup’ (multiple energy group) equations. This
feature is not yet present in the MG linear system package, described below.

The MG solver, called MGMPI, was originally developed by James Bordner as an au-
tonomous package for solving the Poisson equation. Recently, it has been modified for
installation within the ZEUS-MP implicit diffusion driver as an alternate package for solving
the radiation diffusion package. The current MGMPI library contains 3 independent driver
routines: one specifically designed for the Poisson equation, and two which handle general
elliptic PDE’s that have been discretized on arbitrary orthogonal meshes. Of the latter two,
one driver is designed for symmetric matrices and the other for non-symmetric matrices.
Both of these routines are written to perform solutions on matrices which are computed
externally and input through the subroutine calling arguments, in contrast to the Poisson
routine which generates its matrix internally.

MGMPI has been written to accept orthogonal coordinate meshes which use the covari-
ant metric coefficients defined by ZEUS-MP and used throughout the hydro routines. The
solver accepts Neumann, Dirichlet, and periodic boundary conditions. In contrast to the CG
solver, MGMPI’s MPI communication calls are synchronous (blocking); thus computation
and communication may not proceed simultaneously.

A gzipped tar file containing the MGMPI source code and Makefile scripts may be
downloaded from the World Wide Web at the following address: http://www.ncsa.uiuc.edu/
- bordner/mgmpi.html. This website also contains a user guide and separate documents
describing algorithms and performance. All three documents are updated periodically as
modifications to the solver are made.

- 10

4.2. Explicit Diffusion: The Product Formula

The second basic approach to implementing radiation diffusion in ZEUS-MP is based
on an explicit, yet unconditionally stable, update to the diffusion term in equation 8. The
method of solution is based upon the Product Formula (PF); an implementation of the PF for
computing diffusion on uniform Cartesian grids is described in Graziani (1995). The routine
in ZEUS-MP is a generalized version of the approach discussed in the Graziani paper. Full
documentation of our formalism appears in Appendix B, but a brief summary of the method
is appropriate here. Consider a multi-stage operator splitting scheme where the first update
to the radiation energy density accounts for the diffusion term alone:

dE
- = V.(DVE).
dt

We may write this symbolically as a matrix equation:

dEi
- = AijEj,
dt 08)

(17)

where A is a matrix operator containing all information about diffusion coefficients, grid
coefficients, and boundary sources. In the limit of small timesteps, the solution to (18) is

Ei(t + At) = exp(&At)Ej(t). (19)

The art of implementing the PF solution lies in the manner in which the A matrix
is exponentiated. In practice, A is decomposed into a sum of two (almost) block-diagonal
matrices which can be exponentiated with relatively minor effort. In general, there is no
unique decomposition for the A matrix, and issues remain regarding the advantages (if any)
of one choice over another. Our choice, along with values of the matrix elements which
obtain for various types, is documented extensively in Appendix B.

Since the PF is used to evaluate the contribution from the flux gradient term alone, it
follows at once that the operator splitting scheme detailed in $4.1.1 may not be applied here.
Rather, the update of E is split into a pair of substeps before the final matter temperature
update is performed. Recalling that we may write the radiation energy equation, in “clean”
notation, as

E’ - E = k, (LxT’~ - E’) + [E’lD - FE’,

we delineate a two-step solution as

E* - E = [EID, (21)
with the PF providing an explicit update from the diffusion term, and

E’ - E* = k, (aTI - E’) - FE’. (24

- 11 -

The solution to (21) is straightforward, and - as shall be seen in 56 - far less expen-
sive with regard to CPU cost per timestep, as compared with the implicit method. After
linearizing the source term in (22) via equation 12, (22) may be transformed as

E’ =
E* 1 b;T4

1+%+F’ (23)

Therefore, to update both the gas and radiation energy densities, we employ a 3-stage scheme
where the radiation energy density is advanced in time via (21) and (22), and the gas energy
density is updated, as in the implicit scheme, with (13) and the equation of state.

5. Timestep Control, Operator Splitting, and Solution Accuracy

Our ultimate goal of this project is to compare the costs of different algorithms for
computing solutions at a given accuracy. While scalability (however it is defined) plays
a pivotal role in such determinations, the number of timesteps required for a completed
solution is equally relevant. The number of timesteps required is a direct function of the
degree to which physical variables may change in one timestep, while still evolving toward
an acceptable solution. In this study, we define “acceptable” as producing quantities that
differ from asymptotically converged counterparts at approximately the ten percent level.
In our studies we have used both spatial profiles and time-evolution profiles of the relevant
variables (density; gas and radiation temperatures) as accuracy gauges.

5.1. Tests in Static Media

For test cases which exclude material motion, the runs were performed in 1-D for the
sake of economy. Because the physical configuration is spherically symmetric by decree, we
may use 1-D results in these cases without loss of generality. All hydrodynamic tests were
carried out in 3-D. Because the 3-D runs involved grids with 256 radial zones, the 1-D results
presented here were also run with 256 zones. We found that the timestep controls producing
“converged” solutions were the same at both 256 and 480 zones. The accuracy of the higher
resolution runs degrades somewhat more rapidly with relaxed timestep control than do the
lower resolution runs, but the difference is not dramatic. Because the 3-D runs used 256
radial zones, we will use accuracy criteria based on that radial resolution as our guide.

While the tests of ultimate interest are those involving full radiation hydrodynamics, we
also examine scaling and timing tests involving diffusion only. Therefore we document the
allowed tolerances, for both the implicit and explicit algorithms, producing solutions which

- 12 -

are accurate at the 10% level. In the case of the explicit PF algorithm, the timesteps for
diffusion alone are controlled by specifying a maximum allowed ratio of the timestep to the
radiation Courant time, defined as CTad = i$$, where D is the local diffusion coefficient,
and Ax is a local zone width. We find that a “converged” solution is reached at a radiation
Courant number of 0.5, and an “acceptable” solution can be retained at a CTad of 10. Figure 1
shows profiles for the two cases at an evolution time of lo-’ seconds. The solid line and
dashed lines give solutions obtained with CTad equal to 0.5 and 10.0, respectively. The
maximum deviation from the converged solution occurs at the center of the capsule (at the
origin of the plot), and has a relative error of 9.6%.

Figure 2 shows the corresponding plot for the case of evolution computed with the
implicit CG solver. Here, timesteps are regulated by restricting the maximum fractional
change in the radiation energy density (per timestep) to lie within a specified tolerance. In
figure 2, the converged solution (solid line) is obtained with a maximum tolerance of 0.005,
and the dashed line shows the solution obtained with a tolerance of 0.1. Remarkably, the
implicit solution shows little additional deterioration of the solution for tolerances beyond
0.1; indeed the maximum relative error had grown to only 4% for a tolerance of 0.3, and at
0.4 the solver encountered convergence difficulties. This unusual behavior is not seen in tests
which include matter-radiation coupling and/or hydrodynamics, and in more sophisticated
tests a tolerance of no more than 10% was allowed.

The pure diffusion tests compute the evolution of the radiation field according to the
diffusion term alone. In the following tests we compute radiation diffusion with absorptiv-
ity/emissivity terms included, and we allow evolution of the material temperature to proceed
under the action of these same terms. We retain the assumption of a static medium, so the
radiation stress term in (8) and the pdV and viscosity terms in (7) remain inactive. In the
explicit runs, timesteps are controlled by using CTad to control the evolution of E and a
restriction on Ae/e to control the evolution of the e. In the implicit runs, restrictions on
the fractional change in both E and e are used. The same tolerance value is used for both
variables in the following results.

With the implicit algorithm, an asymptotically correct solution is reached for a max-
imum tolerance of 0.005, and solutions accurate at the 10% level are achievable with a
tolerance as high as 0.05, a factor of 2 lower than in the pure diffusion case. This behavior
is shown in figures 3 and 4, where we compare the radiation and gas temperature profiles,
respectively, for both tolerances. The sharp dip in the gas temperature between 0.9 and
l.Ocm is due to the presence of the dense carbon foam layer, with its higher density and
correspondingly higher heat capacity.

While accurate solutions for the gas and radiation temperatures are achievable with the

13 -

0.05 0.1
Radius (cm)

0.15 0.2

Fig. l.- Comparison of pure diffusion runs with the PF for CTad = 0.5 (solid line) and 10.0
(dashed line).

- 14 -

0.05 0.1
Radius (cm)

0.15 0.2

Fig. 2.- Comparison of pure diffusion runs with the implicit CG solver for AE/E = 0.005
(solid line) and 0.1 (dashed line).

- 15 -

implicit solver using reasonable values of the restriction parameters, such is manifestly not
the case with the explicit algorithm. Examination of figures 5 and 6 reveals that accuracy is
approached only with CTad _ < 0.005, and the solution is hopelessly wrong for a CTnd of only
0.5! In both cases, the tolerance on the relative change in e was 0.05, but for both values of
c Tad, the asymptotic timestep is determined entirely by the Courant factor.

The behavior of both the gas and radiation temperatures is consistent for the two algo-
rithms in the converged cases, but the explicit results are disastrously incongruous for even a
semi-reasonable choice of Grad. Such behavior was not anticipated, and we are compelled to
find the cause. The fact that both the gas and radiation temperatures approach the correct
values in the limit of extremely small timesteps (- lo-i6 set!) indicates that an outright
error in either the PF, radiation source/sink, or matter temperature algorithms is not to
blame. We have already seen that the PF produces correct results when used by itself, and
tests involving pure heating and cooling without diffusion have yielded results precisely con-
sistent with implicit tests. The matter temperature algorithm, as discussed in 53, is the same
in the implicit and explicit routines. We are therefore led to suspect that the operator split-
ting, which differs in the two approaches, is the culprit. Recall that in the explicit scheme,
we evaluate diffusion and absorption/emmission in two stages rather than one because the
PF handles diffusion exclusively. If the relative values of fi from these two contributions are
sharply different, then operator splitting in this manner could be problematic.

Both analytic and empirical estimates of these relative contributions show that the
difference between the two is indeed extreme. Consider a cold zone of width - lop3 cm,
bounded by an identical cold zone on the left and a hot zone (Ehot >> E&d) on the right. The
value of the diffusion term in the middle zone may be estimated, to an order of magnitude,
as

E hot c Li:?..---
cl?“2 3x1 (24

which gives a value of roughly 1O22 erg s- i for appropriate values of the physical parameters
at the interface between the helium source and carbon foam layer. In contrast, the middle
cold zone is initially in local thermal equilibrium, so the starting value of fi is effectively
zero. Recalling that the temporal change in E is controlled by the radiation Courant time
(- lo-i3 set), we see that the change in E due to diffusion could easily overwhelm that due
to coupling in our operator splitting scheme. Monitoring the change in E, using ZEUS-MP,
from the diffusion term affirms that this is the case. At a stage when the fractional change in
the matter temperature is on the order of 10p3, the fractional change in E from the diffusion
term, as controlled by CT& is six orders of magnitude higher. The subsequent adjustment of
E due to the source/sink terms is comparable, but not exactly equal to, that of the diffusion
term. Even a small systematic inaccuracy could lead to an enormous error over significant

- 16 -

300

0.05 0.1

Radius (cm)
0.15 0.2

Fig. 3.- Diffusion with coupling: comparison of the radiation temperature from the implicit
CG solver with AE/E = 0.005 (solid line) and 0.05 (dashed line).

17 -

300

I I I I I I I I I I I I 1 I I I I I I ,
0 0.05 0.1 0.15 0.2

Radius (cm)

Fig. 4.- Diffusion with coupling: comparison of the gas temperature from the implicit CG
solver with AE/E = 0.005 (solid line) and 0.05 (dashed line).

- 18

0.05 0.1

Radius (cm)
0.15 0.2

Fig. 5.- Diffusion with coupling: comparison of the radiation temperature from the PF
with CT& = 0.005 (solid line) and 0.5 (dashed line).

19 -

200

%

b

z
CJ

100

0

- .:;
-==cL-------

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

/

0.1

Radius (cm)

Fig. 6.- Diffusion with coupling: comparison of the gas temperature from the PF with CT&
= 0.005 (solid line) and 0.5 (dashed line).

- 20 -

evolution time.

To further investigate this behavior we considered controlling the timestep evolution by
two other means. The first was to replace the radiation Courant condition with a fractional
change restriction like that used on the matter temperature. The second was to use such a
restriction on the net change in E, after both the diffusion and source/sink steps are com-
pleted. The former approach led, for the model considered, to timesteps which asymptoted
to N 10-l’ seconds; the latter to timesteps which grew extremely slowly to lo-i6 seconds
but then dropped by an order of magnitude and leveled off. This behavior vividly under-
scores the extremely short evolutionary timescales for two different contributions to E (as
contrasted with the much longer timescale for e), which are handled simultaneously and
self-consistently in the implicit algorithm. At such timesteps, prospects for computing 3-D
radiation hydrodynamic simulations with the explicit scheme are nil. Whether the potential
for improved solutions via an alternate splitting scheme exists and should be pursued will
be discussed further in 57.

5.2. Tests in Moving Media (ICF Test)

Because of the profound timestep limitations placed on the explicit algorithm, a direction
comparison of the implicit and explicit algorithms on the full ICF problem at comparable
accuracy is not currently possible. In 56 we will perform timing tests on the full ICF problem
with the explicit machinery to estimate approximately how much the explicit algorithm would
cost if it could be made accurate. These results will have direct bearing on the discussion of
future work in $7. We will conclude our discussion of accuracy by documenting the timestep
restrictions needed for reasonable accuracy in the implicit calculation of the ICF problem.

Of paramount importance in true ICF simulations is the temporal behavior of the central
density, gas temperature, and radiation temperature. In the interest of economy, we wish to
performance accuracy estimates using as few angular zones as possible, given that our version
of the problem is spherically symmetric. We have found that for a given radial resolution
(256 zones), the temporal behavior of the physical variables at the capsule’s center is the
same for angular (Q,4) resolutions of (16,16), (32,32), (64,64), and (128,128). This result is
likely due in large measure to the extreme focusing effect experienced as material converges
on the center. Our comparisons of results with different timesteps are thus based upon a set
of runs using the (16,16) angular grid. In the scaling studies presented in $6, grid sizes as
large as (512,256,256) are used.

Hydrodynamic motions in both real ICF tests and our simplified version arise from

21

ablation-driven implosion. Radiation from the hot (initially 300 eV) helium source region
diffuses into the cold (initially 0.025 eV) carbon foam layer, raising the temperature and thus
generating vigorous outward expansion. Due to momentum conservation, the region interior
to the ablated material recoils inward, establishing implosive motion which ultimately ele-
vates the central density by orders of magnitude (roughly 3 in our problem) over the starting
value. As indicated in figure 7, a nascent ablation front is apparent by t = lo-r1 seconds.
The velocities at the ablation and recoil fronts grow with time, with the maximum compres-
sion occuring at t = 3.43 x lo-’ seconds. The final profile shown in figure 7 corresponds to
t = 6.0 x lo-’ seconds, well into the post-rebound phase of evolution.

Figures 8, 9, and 10 show the evolution of the central density, gas temperature, and
radiation temperature, respectively, with time. The gas and radiation temperature plots
both display unmistakeable signs of preheating in the core, beginning at a time of 1.27 x lo-’
seconds for the radiation temperature and 1.38 x lo-’ seconds for the gas temperature. This
heating preceeds the main hydrodynamic compression, which begins at at time of 1.43 x lo-’
seconds (as evidenced by the density) and peaks at 3.43 x lo-’ seconds. In these results, the
converged solutions were obtained with timestep restriction tolerances on both the radiation
and gas temperatures of 0.01, and the acceptable solutions were obtained with tolerances of
0.10. The scaling and timing tests presented in $6 use this latter value.

- 22 -

400

200

1 0
V
>

-200

-400

0 0.1 0.2 0.3

R (cm)

Fig. 7.- Implicit ICF capsule: radial velocity profiles at t = 10-11, 10P1’, and
(1,2,3,4,5,6) x lo-’ sec.

- 23 -

Log(Time (see))

Fig. 8.- Implicit ICF capsule: evolution of the central density for tolerances of 0.01 (solid
line) and 0.10 (dashed line).

C
en

tra
l

G
as

Te

m
pe

ra
tu

re

(e
V)

- 25 -

500

I I I I I I I , I I I I I I I I I I
-9 -9 -8.8 -8.8 -8.6 -8.6 -8.4 -8.4 -8.2 -8.2 -a -a

Log(Time (set)) Log(Time (set))

Fig. lo.- Implicit ICF capsule: evolution of the central radiation temperature for tolerances
of 0.01 (solid line) and 0.10 (dashed line). At the temperature maximum, the upper curve
is the dashed line.

26 -

6. Scaling Studies

Having established appropriate accuracy criteria for various tests of interest, we proceed
to the central question of this report: scalability. In the context of iterative algorithms on
parallel computers, the term “scalable” may have at least two distinct and equally important
meanings. In the case of iterative linear solvers, “scalable” is frequently used to describe
methods with iteration counts that have minimal dependence on problem size. In this
context, multigrid methods are highly scalable and diagonally preconditioned CG methods
scale very poorly. This issue has been explored in detail in Baldwin et. al (1998). This report
focuses primarily on the complimentary view of scalability: the resilience of an algorithm’s
performance when distributed across an increasing number of processors. We mention in
passing, however, that one of the chief incentives for investigating the PF algorithm is that
it represents a limiting case of scalability of the first kind.

In a time-evolution calculation both types of scalability are critically important, and
the two may interact in a manner that is often ignored in mathematical estimates of the
operation count of a matrix solver. Specifically, consider diagonally preconditioned CG vs.
MG. In the limit of small timesteps, the matrix to be solved is diagonally dominant, and
a solution may be returned in a single iteration. As discussed in Baldwin et. al (1998))
the single-node performance of the CG solver will surpass that of the MG solver owing to a
substantially smaller CPU cost per iteration. However, as the timestep becomes larger, the
matrix becomes less diagonally dominant. In this case, the iteration count for diagonally
preconditioned CG can become very large, whereas the iteration count for MG remains low,
typically less than 10. In this case, the cost of the MG algorithm can be significantly lower
than that of the CG solver. In a hydrodynamic simulation, timesteps typically start at very
low values, grow with time, and may vary by orders of magnitude during the dynamically
interesting phase of a simulation. Thus it may easily be the case that the simulation will
generate matrices, at different times, which may best be attacked by quite disparate methods.
Indeed, this possibility has motivated us to develop a version of ZEUS-MP where the implicit
solver can switch from CG to MG when the iteration count of CG becomes significant.

Convolved with the issue of CPU cost vs. evolution time is the question of how well an
algorithm lends itself to multiprocessor operation. Preliminary scaling (with regard to node
number) tests of MGMPI on simple tests (available on the WWW; see $1) suggests that
resiliency of MG to node count may be problematic. Until we have an implementation of
MG that can demonstrably handle the unusual numerical challenges of the ICF test, stronger
judgement will have to be withheld. However, we will see below that our CG algorithm scales
nearly as well as the PF algorithm with regard to node number, for two fundamentally differ-
ent types of scaling tests. Additionally, the real possibility of a substantial reduction of the

- 27 -

nodes CPU set zone-cycle/set
8 110.1 2.38 x lo5

16 112.9 4.64 x lo5
32 113.5 9.24 x lo5
64 111.6 1.88 x lo6

128 112.5 3.73 x lo6
256 112.7 7.44 x 10”
512 117.5 1.43 x 107

1024 117.8 2.85 x lo7

GFLOP speedup parallel efficiency (%)
0.238 1.00
0.464 1.95 98
0.924 3.88 97
1.88 7.90 99
3.73 15.7 98
7.44 31.3 98
14.3 60.0 94
28.5 120 94

Table 1: Pure Diffusion Scaling With CG: 323 zones/node

interation count with effective preconditioning (see $7) holds great potential for developing
an algorithm that is highly scalable by both definitions.

All scaling runs presented here were computed on the ASCI Red machine at Sandia
National Laboratory. The jobs were run in batch mode in either of two queues (llnl.day,
llnl) from late September to late October. In all tests the code was compiled using “-02
-Mnoframe -Munroll” as compile-line options, and “-Knoieee” on the link line. This choice
gave the best performance among those suggested by Paul Work at LLNL. In the second set
of scaling tests, where the total grid size is held fixed, the number of zones per node varied
from a maximum of 64x64~32 (32 nodes) down to 16x16~16 (1024 nodes). In the first set
of tests, where the number of zones/node is fixed, we chose an intermediate value of 323
zones/node. This gives a range of total grid sizes ranging from 256x32~32 at 8 nodes up to
512x256~256 at 1024 nodes.

6.1. Scaled Total Work

The first class of scaling tests involves sequences of runs where the number of zones
owned by a node remains constant; therefore the total amount of work scales linearly with
the number of nodes used. Because the physical size of the domain we model is held constant,
the grid resolution along a given coordinate axis increases as the number of nodes spanning
that axis increases. This means that the numerical character of the model changes in three
potentially important ways. First, increasing the resolution lowers the radiation Courant
time used in explicit tests, therefore increasing the number of timesteps needed to arrive at
a fixed evolutionary point. Secondly, dynamic changes in the medium are better resolved,

28 -

nodes CPU set zone-cycle/set GFLOP speedup parallel efficiency (%)
8 84.74 3.09 x lo5 0.240 1.00 -

16 84.78 6.18 x 105 0.480 2.00 100
32 84.76 1.24 x lo6 0.963 4.00 100
64 84.83 2.47 x lo6 1.92 8.00 100

128 84.92 4.94 x lo6 3.84 16.0 100
256 85.11 9.86 x lo6 7.66 31.9 100
512 84.96 1.97 x 107 15.3 63.9 100

1024 86.08 3.98 x lo7 30.9 126 98

Table 2: Pure Diffusion Scaling With PF: 323 zones/node

which means that a given tolerance on allowed changes per timestep of the various physical
quantities can have a larger effect than in lower resolution runs. Third, the required number
of iterations per timestep for the CG solver increases with zone number; thus the workload
per timestep increases independent of other effects. Because the purpose of this set of scaling
tests is to gauge the scalability with regard to node number, all scaled-work tests are begun
with very low initial values of the timestep and run for 100 models, which covers a portion
of evolution time so short that the variable numerical character of different resolutions does
not manifest itself. The implicit runs use only 1 CG iteration per timestep in nearly all
cases; in the exceptions the increase is too small (a fraction of an iteration in the average
value) to be significant in computing speedup.

Tables 1 and 2, combined with figure 11, provide a direct comparison of the implicit and
explicit diffusion solvers with the rest of the code machinery turned off. In the implicit test,
the number of CG iterations per timestep was unity except for the 1024 node case, where
it is 1.27. Such a small increase affects the total CPU only at the level of a few percent,
which is comparable to the variations observed due to system effects. Therefore we may
properly gauge code performance by multiplying the total number of zones by the number
of timesteps used (100)) and dividing by the “CPU se?, which is the total time used on the
master thread. Because the load is balanced evenly across processors, thread times never
differ by more than a few percent (when the system is operating normally). Therefore we
define “speedup” as the ratio of the zone-cycles/set to that value obtained with the baseline
run, which in the scaled-work tests is performed on 8 processors. The speedup so defined
is presented in the next-to-last column in tables 1, 2, and 3. With this definition, perfect
scaling would be represented by a speedup equal to the number of nodes divided by 8. The
percentage of that value that is actually achieved is given in the final column as “parallel

- 29 -

400 600 a00 1000
Nodes

Fig. ll.- Pure diffusion on a scaled grid: speedup vs. node number for the CG solver (open
circles) and the PF solver (open squares) on a scaled grid with 323 zones/node. The solid
line is the theoretical perfect scaling limit.

- 30

Nodes

Fig. 12.- Radiation hydro on a scaled grid: speedup vs. node number for full radiation
hydro (ICF capsule) with the CG implicit solver (open circles) and the PF solver (open
squares) on a scaled grid with 323 zones/node. The solid line is the theoretical perfect
scaling limit.

31 -

nodes CPU set zone-cycle/set GFLOP speedup parallel efficiency (%)
8 236.0 1.11 x 105 0.267 1.00 -

16 239.1 2.19 x 105 0.528 1.97 99
32 246.1 4.26 x lo5 1.03 3.84 96
64 245.5 8.54 x lo5 2.96 7.69 96

128 243.8 1.72 x lo6 4.14 15.5 97
256 246.9 3.40 x 106 8.19 30.6 96
512 250.6 6.69 x lo6 16.1 60.3 94

1024 253.1 1.33 x lo7 32.1 120 94

Table 3: Radiation Hydro Scaling With CG: 323 zones/node

nodes CPU set zone-cycle/set GFLOP speedup parallel efficiency (%)
8 206.4 1.27 x lo5 0.308 1.00 -

16 206.9 2.53 x lo5 0.614 2.00 100
32 208.5 5.03 x lo5 1.22 3.96 99
64 208.9 1.00 x 106 2.43 7.90 99

128 209.8 2.00 x 106 4.86 15.7 98
256 212.0 3.96 x lo6 9.62 31.2 98
512 212.2 7.91 x lo6 19.2 62.3 97

1024 210.4 1.59 x lo7 38.6 126 98

Table 4: Radiation Hydro Scaling With PF: 323 zones/node

efficiency.”

This measure of scalability yields results that virtually duplicate the theoretical limit
for the explicit solver, and closely approach it for the implicit case. Furthermore, solving the
full set of radiation hydrodynamic equations has very little effect on the scaling relative to
the pure diffusion case. This is illustrated by comparing tables 1 and 3, or tables 2 and 4.

6.2. Fixed Total Work

Taken alone, the results of the scaled-work tests would seem to indicate that ZEUS-MP
is an almost perfectly scalable code (with regard to node number) regardless of whether

- 32 -

the explicit PF or implicit CG algorithm is used for diffusion. However, our second class
of scaling tests yields a markedly different measure of the scalability. In scaled-work tests,
both the computational load and communication overhead on each node are constant as the
node number is increased. In fixed-work tests, however, both of these quantities decrease
with increasing node number, but the ratio of communication overhead to computational
load increases with node number. While we will quantify this statement below, the truth of
it may be realized simply by remembering that the ratio of communication to computation
varies by analogy to the ratio of surface area to volume of a regular solid: the smaller the
characteristic size, the larger the ratio. In our case, communication costs are dependent
upon the “surface area” of the grid domain on one node, whereas the computation required
depends upon the grid volume.

We first illustrate the effects of varying the communication to computation ratio (CCR)
through a comparison of the implicit and explicit algorithms on a fixed grid. Tables 5 and 6
list CPU times for calculations of pure diffusion on a fixed grid of 256~128~. In contrast
to the scaled-work tests, the fixed-work tests cover a significantly longer period of evolution
time, which is the same for all runs of a given class of test. The pure diffusion runs terminate
at t = 10-l’ sec. While this is only a tenth of the time used in the (1-D) accuracy studies,
we are constrained by the time required by the slowest (32-node) jobs, and the maximum
available in readily accessible batch queues (14 hours). As mentioned previously, the number
of zones/node varies from 64x64~32 on the 32-node runs down to 163 on the 1024-node runs.

Because the total work load is fixed, we may compute speedup by taking the ratio of
CPU times between the run of interest and the baseline, which in these tests involve 32 nodes.
We must acknowledge that comparison of the speedup relative to 32 nodes is unlikely to equal
that which would result from comparison relative to a hypothetical l-node baseline, but our
minimum node number is determined by the memory capacity of an individual processor and

nodes CPU set speedup parallel efficiency (%)
32 49896 1.00 -

64 25239 1.98 99
128 14347 3.48 87
256 7989 6.25 78
512 4557 10.9 68

1024 2839 17.6 55

Table 5: Pure Diffusion Scaling With CG: 256x128~128 Grid

- 33 -

the memory needs of the code. Nonetheless, our comparisons within this class of test are
made relative to a common baseline and therefore self-consistent. With our speedup defined
as described, we may define a theoretical maximum from an N-r dependence of CPU time
on N, the node number, normalized to the 32-node baseline. Parallel efficiency is thus the
percentage of that speedup actually achieved.

The speedups shown in tables 5 and 6 clearly demonstrate the effect of an increasing
CCR as the node number increases. To lend a quantitative measure to the CCR, let us
consider the amount of data exchanged between a pair of nodes during an MPI send/receive
operation. In a typical message exchange, two layers of ghost zones are exchanged. A data
slice in an MPI message has an “area” which is the product of the array dimensions defining
the relevent grid face. ZEUS-MP arrays are 5 elements longer than the physical length, owing
to the two ghost zones on each grid boundary, and an extra element which can accommodate
special boundary conditions for the hydrodynamic advection scheme. The data slices sent
are thus two layers with an area determined by the full array lengths. To count all the
exchanged data points, an additional factor of two must be included as information is both
sent and received. Careful counting of exchanged data points for a given nodal domain,
divided by the number of the physical data points owned by a node, allows us to compute a
ratio of array elements which are “communicated” to those which are “operated upon.” We
use this ratio to define the CCR.

As defined, the CCR ranges from 0.28 on the 32-node runs (642x32 zones/node) up
to 1.27 for the 1024-node runs (163 zones/node). In scaled-work tests, we found that 163
zone/node runs scaled with node number equally as well as the 323 zone/node runs showed
in the previous section. The reason for this is that the CCR is constant (0.48 and 1.27 for
323 and 163, respectively) on each node in scaled-work tests. Thus a calculation may possess
a large amount of computational overhead, but if the overhead remains constant in a series

nodes CPU set speedup parallel efficiency (%)
32 944.1 1.00 -

64 483.3 1.95 98
128 255.1 3.70 93
256 136.8 6.90 86
512 73.57 12.8 80

1024 48.33 19.5 61

Table 6: Pure Diffusion Scaling With PF: 256x128~128 Grid

- 34

of scaling tests, then its effects are masked. In a sense, then, scaled-work studies represent
a necessary but not sufficient test of the code+computer marriage: excellent performance
on scaled-work tests is required for any hope of scalability in fixed-work tests, but does not
guarantee it.

The true impact of the CCR will, of course, depend on the latency of the computer’s
network; i.e. the actual time required to pass a given amount of data across the network
hardware. Rather than quote theoretical numbers for the Red machine, we present in ta-
ble 7 lists of the time spent performing communication tasks in the CG solver vs. the total
time spent in the CG subroutine call. Measuring true communication times in an algorithm
where much of the communication cost is (in theory) hidden under computation with use
of non-blocking sends and receives is a non-trivial exercise. We have chosen to measure and
tabulate two communication related quantities. In the CG algorithm (as in the rest of the
code), required sends and receives are posted, and then computation is performed. After the
computation steps are complete, we initiate an MPI-WAITALL command to ensure that the
non-blocking sends and receives have completed before proceeding. We define “send/receive”
time as the total time spent waiting for a successful return from an MPI-WAITALL function
call. This may be interpreted as the amount of send/receive communication time which
was not buried inside the computation time. Our second time measure is “synchronization”
time, which is the amount of time spent in MPI global reduction operations, which in the
CC algorithm are MPI-SUM operations used for computing inner products. The sum of
the send/receive (tsr) and synchronization (tsyn) times is tabulated as t,,,, the net commu-
nication overhead. This is divided by the total time spent in the CG routine (trout), and
expressed as a percentage in the final column of table 7.

The timings presented in table 7 are sums for 100 calls to the CG solver, thus random

nodes zones/node trout t,, tsyn t,,, trout/tcom
32 64x64~32 55.0 1.12 0.483 1.60 2.9%
64 32x64~32 32.0 1.20 0.537 1.74 5.4%

128 32x32~32 17.1 0.74 0.379 1.12 6.6%
256 32x16~32 10.0 0.60 0.366 0.96 9.6%
512 32x16~16 6.38 0.63 0.361 0.99 15%

1024 16X16X16 4.77 0.44 0.425 0.87 18%

Table 7: Net communication overhead in the CG algorithm during the ICF capsule test for
a fixed grid of 256x128~128. 100 timesteps were performed.

35 -

fluctuations due to system effects should be well absorbed. The test problem used was the
full ICF calculation with the CG solver. The final column illustrates the trend consistent
with our previous exercise of data point counting, and shows that the actual times involved
can indeed be significant. This effect is entirely lost in scaled-work tests.

With these timing results in mind, the scaling results from both scaled and fixed work
tests may be well understood. Both the pure diffusion and radiation hydrodynamic tests
(tables 8 and 9) continue to show speedup even at 1024 nodes with only 163 zones/node.
That the speedup curves (see also figs. 13-14) has not turned over by this point testifies both
to the scalability of the routines and that of the hardware network. We see that the parallel
efficiency at large node number is reduced when the implicit algorithm is chosen over the
explicit algorithm, but such a result is consistent with the fact that the implicit solver is much
more communication intensive than its explicit counterpart. As in the scaled-work studies,
the addition of hydrodynamics (e.g. compare table 5 with 8) does little to significantly affect
the scaling.

Given the results in 55 concerning accuracy, the presence in this section of “ICF” tests
with the explicit algorithm deserves comment. As has been mentioned previously and will
be elaborated upon in $7, the chief source of inaccuracy in the explicit scheme lies not in
the PF algorithm but in the operator-splitting method used to marry the PF with radiation
sources/sinks and matter coupling. A reasonable question to ask therefore is whether a
revision of the operator-splitting and coupling schemes is a worthy pursuit in future work.
Revised schemes are highly unlikely to be less expensive than the current one, therefore
it is useful to compare the current explicit scheme to the implicit one and ask whether
a revised explicit algorithm would be competitive with an optimized implicit solver. The
answer to that question hinges upon both scaling behavior and upon estimates of the CPU
time to a completed solution. Because the implicit algorithm leaves considerable room for

nodes CPU set speedup parallel efficiency (%)
32 35710 1.00 -

64 19341 1.94 97
I28 11029 3.40 85
256 6127 6.12 77
512 3647 10.3 64

1024 2126 17.6 55

Table 8: ICF Capsule Scaling With CG: 256x128~128 Grid

- 36 -

improvement with the use of (already known) preconditioners that can sharply reduce the
required number of CG iterations, this scalability comparison and the timing comparisons
to follow in 97 are interesting and important.

Tables 8 and 9 illustrate relative scaling behavior which is strongly similar to that of
the diffusion solvers acting in isolation. The evolution time considered for the ICF test is
the same as that of the pure-diffusion tests: 10-l’ sec. This represents only l/40 of the time
needed for a complete hydrodynamic evolution, but it is certainly sufficient to gauge the
scalability of the algorithms. Over this evolutionary time, the CG solver averaged roughly
170 iterations per timestep (this value nearly doubles by lo-’ set), and thus the CPU cost
is completely dominated by the CG solver. As seen previously, we still see speedup at 1024
nodes, when only 163 zones are owned by each node, but the parallel efficiency of the explicit
solver is noticeably higher than that of the implicit solver. During the bulk of the evolution,
the timestep chosen in the explicit tests was limited by the radiation Courant number (we
chose a value of 5.0 for these tests), whereas in the implicit runs it is limited by the tolerances
on radiation and gas energy fractional changes (0.1). I n neither case, nor in the implicit runs
which cover the entire physical evolution (§5), did the hydrodynamic Courant time play a
significant role.

nodes CPU set speedup parallel efficiency (%)
32 6238 1.00 -

64 3326 1.88 94
128 1710 3.65 91
256 911.9 6.84 86
512 490.9 12.7 79

1024 276.5 22.6 71

Table 9: ICF Capsule Scaling With PF: 256x128~128 Grid

- 37

30

10

400 600 800 1000
Nodes

Fig. 13.- Pure diffusion on a fixed grid: speedup vs. node number for the CG solver (open
circles) and the PF solver (open squares) on a fixed grid of 256x128~128. The solid line is
the theoretical perfect scaling limit.

- 38 -

30 -

400 600 800 1000
Nodes

Fig. 14.- ICF capsule on a fixed grid: speedup vs. node number for the CG solver (open
circles) and the PF solver (open squares) on a fixed grid of 256x128~128. The solid line is
the theoretical perfect scaling limit.

- 39

7. Summary and Discussion

7.1. Current Results

The original purpose of this investigation was to compare the relative merits of the
unconditionally stable, explicit Product Formula (PF) algorithm to those of an implicit ap-
proach using a preconditioned conjugate gradient linear equation solver. The aim was to
compare scalability and time to solution at comparable accuracy for a specific test prob-
lem. The PF algorithm possesses several features which motivated our interest, namely:
reduced communication and memory requirements, and lower operation count per timestep
relative to the implicit approach. The relatively low cost per timestep, plus the possibility
of enhanced scalability due to decreased communication demands, were the primary fea-
tures piquing our interest in this approach. On the other hand, unconditional stability does
not guarantee unconditional accuracy; thus the explicit evolution may still be bounded by
some maximum timestep value which is not present in the implicit approach. Therefore,
the number of timesteps needed for a complete solution, as well as the cost per timestep,
must be considered. Implicit methods have generally been chosen for radiation transport
over traditional (radiation Courant limited) explicit methods for this very reason.

To explore these issues, we have developed ZEUS-MP, a 3-D radiation hydrodynamics
code written for use on massively parallel computers with the Message Passing Interface
(MPI) standard. We then challenged the algorithms within ZEUS-MP by constructing a
test problem inspired by simulations of inertial confinement fusion (ICF). Our code does
not treat nuclear burning, multi-species fluids, non-planckian radiation fields, nor non-ideal
effects in the material EOS; therefore our test problem may not be construed as a real ICF
simulation. Nonetheless, physical parameters have been chosen so that an ablation-driven
implosion on the proper timescale may be realized. Our problem thus consists of radiation
from a hot, optically thin source penetrating and ablating material on a cold, optically thick
target, with subsequent inward radiation diffusion and material implosion. We therefore
exercise our radiation diffusion solvers in a manner that should be meaningful to those in
pursuit of more sophisticated problems.

Our head-to-head comparisons of the implicit and explicit solutions involve not only the
performance of the PF and CG solvers, but of the operator splitting schemes in which they
are embedded. The implicit method uses a two-stage scheme wherein the radiation energy
equation is solved with diffusion coefficients, opacities, and source terms evaluated using the
matter temperature from the old timestep. We then update the matter temperature using
a linearization procedure analogous to that employed in the ARES code (Baldwin et. al
1998). In the explicit scheme, the PF is used to evaluate the diffusion term exclusively. The

- 40 -

remainder of the radiation energy equation is evaluated in a second sub-step, and then the
matter temperature is updated exactly as in the implicit procedure.

In 55, we examined studies to determine timestep restrictions needed to produce aysmp-
totically correct behavior of the physical variables, and looser restrictions which allowed
solutions that lay within roughly 10% of the “converged” values. These “tolerable” solu-
tions then served as the basis for scaling comparisons given in $6. ZEUS-MP uses a variety
of hydrodynamic constraints on the timestep (Courant time, maximum changes in veloc-
ity, artificial viscosity, etc.), but these must be supplemented with additional controls when
radiation is included. In the explicit approach, the radiation Courant time, multiplied by
a user-specified factor, is the default control regarding the radiation energy density. The
implicit method employs a user-specified limit on AE/E, where AE is the change in the
radiation energy density in a given zone resulting from the implicit update. Both solvers use
a similar limit on Ae/e, where e is the gas energy density.

Tests involving either pure diffusion or diffusion with coupling were performed in one
dimension, owing to the spherical symmetry of our problem. Tests including hydrodynamics
were automatically run in three dimensions. All accuracy tests used 256 radial zones, but
some of the scaling tests used as many as 512 radial zones. The number of angular zones
varied from as few as 162 to as many as 2562. In full radiation hydrodynamic runs covering
all (or nearly all) of the implosion phase, we found that the evolution of the central density,
radiation temperature, and gas temperature were independent of the angular resolution,
which again is a consequence of the spherical symmetry we imposed.

When using the implicit method, we found that converged solutions were achieved by
choosing tolerances on BE/E and he/e in the range 0.005 to 0.01. Tolerable solutions
(as we have defined them) were achievable with these restrictions loosened to 0.1 for both
parameters.

Regarding the explicit method: we found, for tests involving pure diffusion only, that
asymptotically correct solutions were approached for CTad _ < 0.5, but that tolerable solutions
were retrievable for C rad 5 10. Unfortunately, we discovered that such values of CTad were
possible only for the case of pure diffusion; once matter-radiation coupling is included, solu-
tion accuracy is totally lost unless CTad is made to lie below (for this problem) 0.005. This
result is a direct consequence of the 3-stage operator splitting scheme, combined with the
default method of controlling timesteps. In 5 5, we noted that when reasonable tolerances on
AE/E were used for timestep regulation, rather than Grad, timesteps remained at extremely
low values: on the order of lo-l7 seconds. A reasonably accurate simulation of the ICF test
with the explicit approach would thus require roughly 400 million timesteps.

- 41 -

While we have shown that the current explicit scheme is not usable for the ICF test,
we have not determined whether an alternate splitting scheme would allow for productive
use of the PF approach. However, we may pose the question as to whether such effort is
even worth pursuing. To that end, we will continue by reviewing the scaling data we have
generated for both solvers, and then by considering timing data for full-term runs of the ICF
test with both solvers. We will show that both published and continuing work on advanced
preconditioners - needed in the implicit linear solver ~ gives substantial hope for an implict
solver which is more cost effective than a hypothetical accurate explicit scheme.

Our scaling tests were divided into two fundamental classes: tests where the total
amount of work scaled linearly with the number of nodes, and tests where the total work
was held fixed. As discussed at length in $6, scaled-work tests represent a necessary hurdle
that a scalable code (and computer architecture) must master, but are not of themselves suf-
ficient to demonstrate true scalability with regard to node number. The reason for this, as
evidenced by the fixed-work tests, is that in scaled-work tests the amount of communication
overhead experienced by a CPU is essentially fixed once the domain has been decomposed
along all three coordinate axes; thus the effects of even a large communication to computa-
tion ratio (CCR) are well masked. Indeed, the scaled-work tests for both algorithms, whether
in isolation or with hydrodynamics, show only slight departures from linear speedup through
a node number of 1024, with no real indication of a major slowdown due to communication
cost.

The fixed-work tests clearly highlight the effect of an increasing CCR as the node number
grows, but even here the differences between the explicit and implicit solvers are not as
large as might have been anticipated. In both pure-diffusion and radiation hydro tests, the
speedup curves retained strongly positives slopes even when the number of zones per node
had dropped to 163, and it is unlikely that a production calculation would use a per-node
number substantially smaller than this. Therefore, with regard solely to scalability with
respect to node number, both algorithms have acquitted themselves admirably.

7.2. Implicit vs. Explicit: Likely Prospects

Having collected and summarized our accuracy and scaling tests as they currently stand,
we now examine ICF runs, with both solvers, that cover the entire implosion phase and
terminate at the point of core rebound. The showcase of this discussion is a collection of
timings presented in table 10. These timings pertain to a calculation of the full ICF test on
a 256~128~ grid.

42

The first column of table 10 contains evolutionary time (all times are in seconds) of
the simulation. The final time shown is 90% of the evolution covered covered in the low-
resolution tests shown in $5. In order to run the ICF test to completion at high resolution
with the implicit solver, it was necessary to run the job on an Origin2000 machine at NCSA,
as none of the batch queues for janus (the Red machine) had sufficiently long time limits.
Since we are concerned with time values on janus, we have done the following: the 02K run
logged both evolution time and cumulative CPU time at each timestep. From these data,
we determined that it required 28.6 times as much CPU time to evolve to t = 3.6 x lo-’
set as it did to evolve to t = 1.0 x 10-l’ sec. This ratio was then used to scale the implicit
result from janus, which terminated at 10-l’ set, to a projected value for the full evolution
time. The first number in column 3 is an actual janus timing, and the subsequent numbers
are scaled estimates. The 02K results were run on 64 nodes of a 128-node machine. Because
NCSA jobs are not over-scheduled with regard to node requests, there is no competition for
node use from other jobs. Because of this the NCSA batch queues quite closely approximate
true dedicated queues in terms of performance. Therefore we feel that using our advertised
ratio to scale timing results from another machine leads to estimates which are reasonable
enough to warrant the conclusions we will draw from them.

Column 2 contains estimates of the time which would be required for the current explicit
scheme to obtain a comparably accurate solution to the ICF problem. These estimates are
made with two pieces of information. The first is the cost per timestep of the explicit algo-
rithm, which was determined by running the code on janus for a large number of timesteps,
and dividing the CPU time used by the total number of timesteps. The second piece of
information is an approximate value of the timestep required for an accurate solution. The
value chosen was lo-l7 seconds, and was taken from our discussion in 55. The CPU times
for various evolution times are then estimated and shown in column 2.

Column 3 contains the actual and projected timings for the current implicit solver as it

t (evol) Exp. CPU Imp. CPU Exp. CPU Imp. CPU <CG Iter>
(current) (current) (hYP.) (hYPJ (current)

1.0 x lo-l0 3.5 x 10” 2.1 x 103 2.8 x lo2 2.1 x lo2 170
1.0 x 10-g 3.5 x 107 1.2 x 104 2.3 x lo3 1.2 x lo3 310
3.6 x lo-’ 1.3 x lo8 6.0 x lo4 8.1 x lo3 6.0 x lo3 350

Table 10: Approximate timings for accurate ICF solutions with current and hypothetical
(“hyp.“) PF and CG solvers. All times are in seconds.

- 43

performs on janus. We had fully intended to extend the runs to the evolution time considered
in the accuracy tests (4.0 x lo-’ set), but random and persistent system outages in the 02K
platform prevented us from obtaining the full-length run. Nonetheless, 90% of the full run
will allow us to discern the key points of this exercise. Column 4 contains timings for
an explicit run performed fully on janus. While the solution was hopelessly inaccurate, we
present these timings as lower limits to what may be expected from a “hypothetical” explicit
scheme which can produce an accurate result. We do this under the reasonable assumption
that such a solver is unlikely to be less expensive than the one currently implemented. This
run was completed with a CTad of 5.0, and a tolerance of 0.05 on the fractional change in the
gas energy density.

Column 5 presents the most speculative numbers in the table. In a comparison of
timings using CG with two different preconditioners, Baldwin et. al (1998) found that, for a
spherically symmetric implosion problem in 2-D, CG with an ICT (Incomplete Cholesky with
Thresholding) preconditioner returned a solution in less than one tenth the time required
by CG with diagonal scaling (DS). Refering to table 12 of their paper, we see that their
ICT+CG solver showed speedups of 1.16, 3.12, and 11.82 relative to DS+CG, for problem
sizes of 900, 104, and 9 x lo4 zones. The speedup ratio grows dramatically with problem size
because for diagonally preconditioned CG, the average number of iterations required each
timestep varies strongly with problem size, whereas the dependence shown by ICT+CG is
much weaker. Our test problem involved 4.2 x lo6 zones, which is nearly 47 times the size
of the largest 2-D spherical implosion problem considered in the Baldwin paper. Guided by
these results, we ask what level of speedup might be realizable in our implicit CG solver
if an advanced preconditioner is substituted for diagonal preconditioning. This speedup is
dependent upon both the reduction in the number of CG iterations and the relative cost
of the preconditioning operation. Given that the Baldwin group achieved over a factor of
10 relative to diagonal preconditioning on problem sizes far smaller than ours, we regard a
factor of 10 as a conservative estimate of the amount of speedup potentially realizable in
our scheme. Unlike the ARES code, ZEUS-MP spends an amount of time doing hydro and
supplemental functions which is very small compared to the CG solve once the number of
iterations becomes much larger than unity. Therefore, a speedup in the CG solver relative
to diagonal preconditioning is highly indicative of the speedup of the entire code. We thus
display in column 5 rough predictions of the total CPU cost for the implicit solver with an
“advanced” preconditioner. These estimates are merely those taken from column 3, with an
order of magnitude reduction. To better appreciate the amount of room for improvement
in our current DS+CG scheme, we include a running average of the total number of CG
iterations per timestep required as a function of evolution time. These numbers are shown in
column 6. Swesty (private communication) has found, in work being prepared for publication,

- 44 -

that the number of CG iterations needed in large diffusion problems is of order 10 when
preconditioners based upon approximate inverses are used.

Columns 3 and 4 of table 10 give timings with the implicit and explicit solvers as they
are currently implemented in the code, with typical choices of timestep control parameters.
While the results of the explicit run in column 4 were not usable, we identify the timings
as representing a lower limit to the timings that would result from a hypothetical modified
scheme (hence the “hyp.” designation) that could yield accurate results with a CTad of 5-10.
Column 2 shows what would be roughly needed for an accurate solution with the existing
explicit scheme, and demonstrates quite clearly that the prospects for ICF calculations with
the explicit algorithm are hopeless as things currently stand. Column 3 gives representative
timing values with the current implicit solver, and column 5 gives predicted estimates for
what could be obtained with existing advanced preconditioners suitably adapted for parallel
use. We emphasize that the current preconditioning employed is the least effective choice
possible (apart from none). Furthermore, extensive work into parallel preconditioners has
already resulted in at least two library packages (ParPre and PETSc) containing a variety of
preconditioners designed for parallel use, thus there are already a variety of choices available
for further inquiry and research. Our numbers, taken at face value, imply (1) that there exists
considerable hope for an implicit solver that is far more economical than the diagonally
preconditioned solver currently in place, and (2) ‘t 1 will be difficult, if not impossible, to
produce an explicit routine that is dramatically superior to an advanced implicit solver. This
latter statement would be refuted if either (1) the PF routine could be run at values >> 10,
or (2) if advanced preconditioners in the CG algorithm in all cases destroyed the scalability
(with regard to node number) of the solver. Even pure diffusion tests with the PF are limited
to values of CTad of 10 or less if accuracy is to be retained, so it is difficult to envision such
a limitation being overcome regardless of the splitting scheme chosen to include sources,
sinks, and matter coupling. Therefore we feel that the prospects for running the PF at high
radiation Courant factors are virtually nil. The scalability of advanced preconditioners is
perhaps the issue of greatest importance when possible choices are considered, but given that
a minor industry has arisen in pursuit of preconditioners that are scalable both with regard
to problem size and node number, we feel that the prospects for a high-performance implicit
scheme are greater than those for an efficient scheme based upon the Product Formula, at
least so far as problems similar in nature to the ICF capsule are concerned. We therefore
suggest that future research efforts at treating problems of this sort will be most profitably
directed toward implicit schemes with optimized iterative solvers.

7.3. Future Work

- 45

A. Discretization With Covariant Coefficients on a Staggered Mesh

Here we present a few simple relations which are used extensively in Appendices B
and C. ZEUS-MP uses volume differencing and covariant metric coefficients in a scheme
identical to that used in ZEUS-2D and ZEUS-3D. A full treatment of the scheme may be
found in Stone & Norman (1992), and Stone, Mihalas, & Norman (1992), but we will present
here only what is needed to decipher the formulae given in the following appendices.

ZEUS-MP uses a staggered mesh, with energies, densities, temperatures, and opacities
defined at zone centers, and velocities, fluxes, and diffusion coefficients defined at zone
interfaces. We thus refer to an “A” mesh (with quantities labeled with subscript “a”) and a
“B” mesh (with quantities labeled with subscript V). The A mesh is coincident with zone
interfaces, while the B mesh is coincident with zone centers.

The equations in ZEUS-MP are cast as functions of covariant metric scale factors, 91,
a, 931, and g 32, which have the following values:

91 = 1 (all coordinate systems), (Al)

Q2 =
1 1 (Cartesian)

1 (cylindrical) Pw
r (spherical),

1 (Cartesian)
931 = T (cylindrical) (A3

T (spherical),

and
(Cartesian)
(cylindrical)

8 (spherical).

With these definitions, we may document the formulae for the gradient of a scalar, E, and
the divergence of a vector, F:

(VE) = itIE 1 i?E 1 i3E . - _- ~-
3x1' 92 8x2' 931932 8x3 '

645)

v * F = IL
1
?- (g2g31gdi) + a

92931932 3x1
-& (931932F2) + & (g-r;)] . W)

Finite-difference expressions in ZEUS-MP are written as functions of volume differences.
If we define Ax,, Ax2, and Ax3 as differential length elements along the 3 respective co-
ordinate axes, then one may show that corresponding differential volume elements may be

- 46 -

written as follows:

Av, = gmlAx1; (w
AT4 = g32Axz; WI
AV, = Ax3. W)

In appendix B, we will use the expressions given above in the formulae for the PF matrix
elements, but in appendix C, we will write the final matrix element expressions in terms of
actual array names used in ZEUS-MP. Doing so will avoid expressions which, when written
in discrete form, become a blur of parenthesized zone indices, subscripts, and superscripts.
Therefore we tabulate array quantities which represent the fundamental grid variables used
in the following appendices:

Direction g2 g31 B2 Ax AV
1 g2a(i) g3la(i) - dxla(i) dvolla(i)
2 - g32a(j) dx2a(j) dvol2a(j)
3 - - dx3a(k) dvol3a(k)

Table 11: Metric coefficients, zone widths, and differential volume elements for the “a” mesh.
Corresponding elements for the “b” mesh are found by replacing “a” with “b” in the array
names.

Direction gil !& g;; AZ-~ AV-l
1 g2ai(i) g3lai(i) - dxlai(i) dvollai(i)
2 g32ai(j) dx2ai(j) dvol2ai(j)
3 - dx3ai(k) dvol3ai(k)

Table 12: Inverse metric coefficients, zone widths, and differential volume elements for the
“a” mesh. Corresponding elements for the “b” mesh are found by replacing “a” with “b” in
the array names.

Tables 11 and 12 give, using the “a” mesh as an example, a listing of the most commonly
used differential element expressions in the code, along with their corresponding array names.
Table 12 shows the reciprocal values of the quantities given in table 11. A completely
analogous set of quantities exists for the “b” mesh as well.

- 47 -

B. The Generalized Product Formula

In this appendix we present the full machinery for evaluating the radiation diffusion term
via the Product Formula (PF). R ecall that in this formalism we are solving the following
equation,

dE __
dt = V.(DVE),

which we recast in matrix form as

Ei(t + At) = exp(&At)Ej(t). (B2>

As shown, equation B2 may be interpreted as the solution to a one-dimensional, dis-
cretized form of the diffusion equation. Following closely the procedure outlined in Graziani
(1995), we use (B2) to solve the 3-D problem by performing sequences of 1-D sweeps along
the three coordinate axes. The order of the sweeps is permuted from one timestep to the
next in a manner identical to that employed in the hydrodynamic advection step. Our over-
all implementation of the PF is identical to that described in the Graziani paper, and the
reader is strongly encouraged to reference that work for more background discussion. The
differences in between our new algorithm and that outlined in the Graziani paper lie in the
values of the matrix elements, which in ZEUS-MP are written using the covariant metric
coefficients on the staggered mesh, and which in general need not produce a uniform grid.
This feature breaks the matrix symmetry present in the case of uniform Cartesian meshes,
for which the Graziani algorithm was specifically designed. Rather than regurgitating the
full discussion presented in the Graziani paper, this appendix makes use of the identical
concepts and terms defined therein, and presents our exponentiated matrices (the heart of
the PF method) as extensions of the simpler versions presented in the Graziani work.

We will illustrate the method by considering a 4-zone problem in one dimension. With
minimal algebra the “div-grad” term may be represented as a matrix of the following form:

iL!l=

-&A+B B 0 0
C -(C + D) 0
0 E -(Ei F)
0 0 G -(G T&H)

w

In this general form, we see that the superdiagonal terms (B, D, F...) are not equal to their
transpose-counterparts on the subdiagonal (C, E, G...), thus the matrix is not symmetric
in the usual sense. This asymmetry arises because of nonuniform grid expressions buried
in the matrix elements (but which will be detailed below). Additionally, we see that the

- 48 -

main diagonal is expressible as a sum of the sub- and super-diagonal terms on the same
row. Following the convention in Graziani (1995), we use 81 and Br to represent the effect
of a reflecting (closed) or non-reflecting (open) boundary condition on either side. In the
case of closed B.C.‘s &(19,) = 0; otherwise &(Q,) = 1. N umerically the effect of this is to
include contributions from “ghost-zone” values of either a sub-diagonal term (at the inner
boundary) or super-diagonal term (at the outer boundary).

The original Graziani algorithm was designed to further include the effects of time-
variable sources at either boundary, and are thus part of the boundary conditions. These
effects may be included elegantly by augmenting our matrix M by an additional row (and
column) for each boundary. Denoting our inner (outer) boundary source terms with I’l(l?,),
we may define an expanded matrix A, as follows:

A=

r,e, -p - elp (1 - elp 0 0 0
&A (-&A + B)

-(C”+ 0)
0 0 0

0 c
0 0 E
0 0 0
0 0 0

Inspecting (B4), we see that in the case of reflecting B.C.‘s the boundary rows duplicate
the rows immediately interior, which correspond to the first and last physical grid points.
Simultaneously, the extreme left and right columns become null vectors. For open bound-
aries, the boundary rows represent evolution equations for the source terms, which or may
not be zero.

The matrix given in (B4), when exponentiated, would in principle allow the PF solution
to be applied via (B2). The exponentiation of a general matrix, even a tridiagonal one, is a
non-trivial exercise, even with a software package such as Mathematics (which we have used,
as did Graziani). The process is simplified tremendously by decomposing A into a sum of
“even” and “odd” matrices which are almost block diagonal. As discussed by Graziani, the
decomposition is not unique, and the effects of choosing one over another are not presently
known. Nonetheless, we follow the method in Graziani’s paper and define our decomposed
matrices as

- 49 -

A, =

and

'0 -(I-elp3 (l-ep 0 0 0
0 -B B 0 0 0
0 c -c 0 0 0
0 0 0 -F F 0
0 0 0

i” 0 0 (l-?& -(l--GB,)G :

(B5)

I

rlel 0 0 0 0 0 \
8lA -elA 0 0 0 0

A,,= ’ ’ -DD 0 0
0 0 E-E 0 0’
0 0 0 0 -8,H 0,H
0 0 0 0 0 rToT /

(W

The exponentiation of A, and A, was performed using Muthematica, which proved to
be highly useful in this exercise. We therefore arrive at our exponentiated matrices, which
have the following form:

exp &> =

i -(I - e,) (1 _ (,)) B(l-;e;+q 0 0 0

0
(CSBdBfC)) B(l-e-(B+C) >

B+C B+C 0 0 0

0 +++C)) (B+~YT-@+~) > B+C B+C 0 0 0

0 0 0 (G+Fc(~+~) > +-(F+G))
.(I-:%))

FW
0

0 0 0 (G+F~K@+~)) 0

0 0 0 (l - @>
F+G

-(1 _ cry@+“))

F-tG

1

\

,

J
W)

50 -

and

exp (A,) =

0 0 0

0 0
0 E+De-(*+E) D(l-e-(*+E))

D+E 0 0
0 E(l-:%+E)) D+Ee-(*+E)

DSE DSE 0 0
0 0 0 e-e,H H(eb(H+r,)-l)

eeTH(H+r,)
0 0 0 0 eerrr

In the case of symmetric matrices (which obtain from uniform Cartesian grids), the original
matrix elements become symmetric. In this instance, the matrix elements in (B7) and (B8)
reduce to the corresponding expressions for the symmetric case presented in the Graziani
paper.

With these matrices in hand, the PF solution is carried out by the technique outlined
in the Graziani paper and which is identical to that in the original algorithm supplied to
us by Graziani. What is needed to complete our discussion are the formulae for the matrix
elements themselves, specifically the subdiagonal and superdiagonal elements employed for
sweeps along each coordinate axis. These expressions, which include the timestep factor
from the exponential term in (B2), may be listed as follows:

subdiag(1) =

superdiag(1

At . Dl(i) x A~~;~;~~;;i) l-coordinate;
at * Da(j) x s&(j)

AV;(jW$(j)(g;(i))2 2-coordinate;
at. D3(k) x Av,-(k)A~~(k;(g~lji)9~2(j))z 3-coordinate;

=1

=j

= k

At. Dl(i + 1) x ~$~~$~~~Z~!i~ l-coordinate; 1 = i

At. D2(j + 1) x i&+1)
AV~(j)Azb,(j+1)(g~(i))2 2-coordinate; 1 = j

At. D3(k + 1) x AV~(n)A~~(k+:)(g~l(i)g~a(i))” 3-coordinate; 1 = k

51 -

C. The Implicit Radiation Energy Equation Matrix

The matrix solved in the implicit diffusion algorithm is generated from a discretization
of equation (16). Only the diffusion term contributes off-diagonal elements to the matrix,
as the quantities multiplying E in the Eddington tensor term, FTE, are taken from the
previous timestep. Thus most of the complexity arises from expanding V . DVE, where D
is a diffusion coefficient. Before proceeding, we note that in the code, (16) is symmetrized
by multiplying both sides by a differential volume factor, which is written with the code
variables defined in Appendix A as dvolla(i).dvol:!a(j).dvol3a(k). This expression is merely
a product of the three volume differences between interfaces along the i,j, and k coordinate
axes, respectively. For a given (i,j,k) mesh point, the main diagonal matrix term will be
the sum of the identify matrix, the matter coupling term, the Eddington tensor term, and
those terms of the diffusion operator involving E(i,j,k). All off-diagonal terms will consist
strictly of the appropriate remaining pieces of the diffusion operator. Since the matrix is
symmetrized, we need concern ourselves only with the upper off-diagonals in addition to the
main diagonal. The first, second, and third superdiagonals will consist of those parts of the
diffusion operator multiplying E(i+l,j,k), E(i,j+l,k), and E(i,j ,k+l), respectively. Labeling
the main diagonal of the matrix as DD(i,j,k), and refering back to (16), we may write

DD(i, j, k) = dvlla(i) . dvl2a(j) . dvl3a(k)

x (1.0 + cpl(i, j, k) + dt . grdvcf(i, j, k) - oper(i, j, k)) ,

where cpl(i,j,k), grdvcf(i,j,k), and oper(i,j,k) are the coupling, radiation stress, and diffusion
operator terms, respectively. The radiation stress term is the tensor inner product of the
velocity gradient (computed from the velocity at the previous timestep), and the Eddington
tensor; i.e. Vv : f. The 3-D expression of this term is extremely lengthy and will not be
included here, but will be supplied to interested readers upon request. An expression for the
2-D case may be found in Stone, Mihalas, and Norman (1992). The essential feature is that
the expression is linear in E(i,j,k) alone. The cpl(i,j,k) term is evaluated as follows:

cpl(i, j, k) =
kre(i, j, k)

NW4 ’

where

kre(i,j,k) = cedt -6~;

n(i,j,k) = l+
4akre(i, j, k)T3(i, j, k)

w(i,i k)

P>

w
W)

- 52

The remaining contribution to DD(i,j,k) is that of oper(i,j,k), which is composed of the
terms from V . F which multiply E(i, j, Ic), and is written as follows:

oper(i, j, k) = dt x

[
- dvllai(i) .

[(g2a(i + 1) . g3la(i + 1))” . Ol(i + 1, j, k) . dvllbi(i + 1) +

(g2a(i) + g31a(i))’ . Dl(i, j, k) . dvllbi(i)]

- dvllai(i) . g2bi(i)2 .

[g32a(j + 1)2 . D2(i, j + 1, k) . dvl2bi(j + 1) +

g32a(j)2 . o2(i, j, k) . dvl2bi(j)]

- dvl3ai(k) . g31bi(i)2 . g32bi(j)2 .

[D3(i, j, k + 1) . dvl3bi(k + 1 + D3(i, j, k) . dvl3bi(k)

I
(W

The superdiagonals, DDPl(i,j,k), DDPa(i,j,k), and DDP3(i,j,k), are more simply ex-
pressed and written as follows:

DDPl(i, j, k) = -dt . dvl2a(j) . dvl3a(k) . (g2a(i + 1) . g3la(i + 1))” .

Dl(i + 1, j, k) . dvllbi(i + 1)

DDP2(i, j, k) = -dt . dvlla(i) . dvl3a(k) . (g2bi(i + 1) . g32a(i + 1))” .

D2(i, j + 1, k) . dvl2bi(j + 1)

(W

DDP3(i, j, k) = -dt . dvlla(i) . dvl2a(j) . (g3lbi(i) . g32bi(j))2 .

D3(i, j, k + 1) . dvl3bi(k + 1)

(W

In equations C5 through C8, Dl, 02, and 03 refer to the face-centered diffusion coef-
ficients along each of the three coordinate axes.

- 53 -

REFERENCES

Baldwin, C., Brown, P., Falgout, R., Jones, J., & Graziani, F. 1998, J. Comp. Phys.,
submitted.

Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,
R., Romine, C., & Van der Vorst, H. 1994, “Templates for the Solutoin of Linear
Systems: Building Blocks for Iterative Methods,” pub. SIAM.

Fiedler, R. 1997, http:// www.supercomp.org/sc97/program/TECH/FIEDLER/INDEX.HTM

Graziani, F. 1995, J. Comp. Phys., 118, 9-23.

Stone, J. & Norman, M. 1992a, Astrophys. J. Suppl., 80, 753-790.

Stone, J. & Norman, M. 199213, Astrophys. J. Suppl., 80, 791-818.

Stone, J., Mihalas, D., & Norman, M. 1992, Astrophys. J. Suppl., 80, 819-845.

This preprint was prepared with the AAS IKI’QX macros ~4.0.

